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Abstract A new simulation strategy based on a stochastic
process has been developed and tested to study the structural
properties of the unfolded state of proteins at the atomistic
level. The procedure combines a generation algorithm to
produce representative uncorrelated atomistic microstruc-
tures and an original relaxation method to minimize repul-
sive non-bonded interactions. Using this methodology, a set
of 14 unfolded proteins, including seven natively unfolded
proteins as well as seven “classical” proteins experimentally
described in denaturation conditions, has been investigated.
Comparisons between the calculated and available experi-
mental values of several properties, at hydrodynamic and
atomic level, used to describe the unfolded state, such as the

radius of gyration, the maximum length, the hydrodynamic
radius, the diffusion coefficient, the sedimentation coeffi-
cient, and the NMR chemical shifts, reflect a very good
agreement. Furthermore, our results indicate that the rela-
tionship between the radius of gyration and the hydrody-
namic radius deviates from the Zimm’s theory of polymer
dynamics for random coils, as was recently observed using
single-molecule fluorescent methods. Simulations reveal
that the interactions between atoms separated by three
chemical bonds (1–4 interactions) play a crucial role in the
generation process, suggesting that the unfolded state is
essentially governed by bonding and short-range non-
bonding interactions.

Keywords Denatured state . Hydrodynamic properties .

NMR chemical shifts . Stochastic simulation . Uncorrelated
atomistic microstructures . Unstructured proteins

Introduction

Solving the protein folding problem is one of the most
challenging tasks in structural biology [1, 2] as for instance,
folding intermediates are inaccessible to X-ray crystallogra-
phy. The starting point of a folding reaction is the ensemble
of structurally disordered molecules in the denatured state
[3] where structure can trigger nucleation and initiate the
protein folding. In this respect, the unfolded states, studied
at structural resolution, can be the «Rosetta Stone» of the
protein folding problem [4].

Furthermore, it is now clear that a significant part of
eukaryotic genomes encode proteins with substantial
regions of disordered structure [5]. Several types of biolog-
ical functions have been ascribed to these so-called natively
unfolded proteins (NUPs), such as molecular recognition,
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signal transduction or neurodegenerative diseases [6–8].
Unstructured regions are also frequently found in regulatory
and cancer associated proteins [9]. For a review of this
particular family of proteins, see [10]. Intrinsically and
partially disordered under physiological conditions, these
particular proteins exist as dynamic ensembles in which
the atomic positions significantly vary during time, with
no specific equilibrium values. In general, their activity
involves the binding to a partner ligand, and these interac-
tions are typically associated with the induction of folding
the disordered structures, therefore constituting an unusual
structurating refolding process. The existence of these sys-
tems questions one of the landmarks in protein biology,
claiming that the specific function of a protein is determined
by its unique and rigid three-dimensional (3D) structure
[11]. The study of this amorphous class of proteins remains
therefore out of reach by classical structural biology because
of their inherent conformational heterogeneity.

Experimental characterization of denatured states of pro-
teins represents a difficult task, as it is necessary to disfavor
the population of native states without adding denaturants
[12]. In addition, the relatively flat energy surfaces associ-
ated with such a state makes modeling these systems quite
problematic [13]. The recent review of Fisher et al. high-
lights both the strengths and disadvantages of the available
strategies established to simulate these structures, i.e.,
ensemble-restrained molecular dynamics (MD) simulations,
ensemble construction using a predefined conformational
library, etc. Other methods are based on statistical criteria
rather than on energetic ones. For example, Sosnick and co-
workers [14] reported a procedure to generate ensembles of
unfolded structures using a self-avoiding statistical coil
model that is based on backbone conformational frequencies
in a coil library (i.e., a subset of the Protein Data Bank). The
flexible-meccano method uses a coil-library and a simple
volume exclusion term for conformational sampling [15].
The backbone of the unfolded state conformation is gener-
ated by using a subset of the database of amino acid-specific
backbone dihedral angles {φ,ψ} propensities, which
excludes all residues in α-helices and β-sheets. Residue i
is connected to residue i+1 by selecting a random pair of φ-
and ψ-angles, taking into account the nature of residue i,
and the torsional subset database. The residual dipolar cou-
plings (RDCs) simulated within this model present a rea-
sonable agreement with the experimental couplings
measured in both natively unfolded and chemically dena-
tured proteins [16, 17].

Among the current theoretical methods, those based on
quantum scale modeling, deserve special attention because
of their very accurate predictions. However, as a consequent
drawback, the size of the CPU-affordable systems is limited,
and their applicability for studying the conformational prop-
erties of proteins remains completely impossible. These

limitations are partially circumvented by molecular mechan-
ics (MM) approaches, with MD and Monte Carlo (MC)
being the most frequent. Although these simulation techni-
ques have allowed investigating a number of properties and
phenomena associated with proteins possessing well-
defined 3D structures [18–20], they are not efficient enough
to examine the conformational behavior of denatured pro-
teins. Indeed, the complexity of the latter arises not only
from their conformational disorder but also from the high
number of flexible degrees of freedom accompanying their
macromolecular nature. Whilst they have successfully de-
scribed the conformational properties of small peptides [21,
22], neither MD and MC are appropriate to produce large
sets of representative uncorrelated microstructures within
reasonable computational resources because of the structural
correlation imposed by their algorithms.

In this work, we propose a new simulation strategy
that has been specifically designed to overcome such
problems. Based on a procedure previously developed to
study amorphous polymers in the solid state [23–25], it
combines an algorithm generating representative atomis-
tic microstructures and a relaxation stage minimizing
non-bonded interactions that allows a large number of
relaxed and uncorrelated atomistic microstructures to be
recurrently obtained at very reasonable computational
costs.

As classical proteins under denaturing conditions and
NUPs share the same characteristics, we selected two 7-
species sets from both families, whose various structural
characteristics were available. The reliability and the perfor-
mance of our generation-relaxation method will be granted
if the properties computed for the generated conformations
fit the experimental values. Two types of properties in
solution substantially changing with the protein conforma-
tion, were chosen: at hydrodynamic and atomic-level. The
first, like radius of gyration (Rg), hydrodynamic radius (RH),
diffusion (D) and sedimentation (s) coefficients, and the
maximum lenght (Lmax) are key factors to describe the
molecular dimensions and compactness of the system. At
the atomic-level, we computed NMR chemical shifts which
are totally dependent on the conformation and the chemical
environment, providing information about local conforma-
tional preferences.

The paper is organized as follows. First we present the
original strategy developed in this work to study the con-
formational behavior of disordered proteins. Then, the pro-
teins and their structural properties used to check the
reliability of such theoretical strategy are described. After
this, the structural parameters calculated using the micro-
structures produced for 14 unfolded proteins are compared
to the available experimental data. Finally, we discuss the
main features involved in this work and the conclusions of
the work are outlined.
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This newly established technique will help to give a
detailed characterization of NUPs leading to the develop-
ment of new drug design strategy. Indeed, the understanding
and control of protein–protein interactions based on
disorder-to-order transitions of one of the partners and in-
volved in several normal and pathological biological pro-
cesses should pave the way to several and essential
therapeutic targets [26, 27].

Material and methods

Simulation strategy

The strategy, schematically illustrated by Fig. 1, uses the
following inputs: (i) the primary structure of the protein; (ii)
a library with the data needed for the 20 amino acids found
in coded proteins; and (iii) the intervals defined by the user
as allowed values for the backbone and side chain dihedral
angles in each amino acid. The primary structure is intro-
duced as a list using the conventional three-letters code. On
the other hand, the library is formatted as a simple text file
and contains: (a) the molecular connectivity, bond lengths
and bond angles; (b) the “atom type” associated to each
atom in each amino acid; and (c) the force-field parameters
used to evaluate the energy during the generation-relaxation
process. In this work all the parameters were taken from
AMBER [28], a well-known force-field that is frequently
used to examine the dynamical properties of proteins with

3D order. However, it should be emphasized that this pro-
cedure is compatible with many force-fields and our aim is
not to investigate the reliability of the AMBER force field in
the description of the structural properties of the unfolded
state of proteins. Finally, the last input file defines the range
of allowed values for the backbone and side chain dihedral
angles. This information can be used to improve the effi-
ciency of the generation process by imposing restrictions
that exclusively allow low-energy atomic positions. For
example, the dihedral angle associated with the peptide
bond ω is allowed to take values within the interval
180°±10°, while the dihedral angles associated to the side
chain aromatic rings of Phe, Tyr and Trp are 0°±0°. In order
to avoid any biasing of the results, no other restriction has
been introduced in the remaining backbone (φ, ψ) and side
chain dihedral angles (i.e., they are allowed to take any
value in the interval 180°±180°) with the exception of
Pro, whose values have been defined according to the
pseudo-rotational states of the pyrrolidine ring [29, 30].

The input information is used to produce representa-
tive microstructures of a given disordered protein using
a two-step procedure. In the first one, microstructures
are generated with minimum torsional strain, while in
the second step such microstructures are relaxed. Spe-
cifically, the generation algorithm can be summarized as
follows (Fig. 1):

(1) Three bonded atoms are placed in arbitrary positions
within the simulation box.

Fig. 1 Flowchart detailing the
strategy used to obtain
representative microstructures
of disordered proteins
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(2) A number, k, of positions are randomly generated for
the fourth atom, considering the interval of allowed
values supplied in the input information for the dihe-
dral angle, the energy associated with every generated
position (i.e., Ej where j ranges from 1 to k) being
calculated. One of these positions is selected by apply-
ing a typical MC acceptance criterion, that is a position
is chosen if:

Rndð1Þ < e�tEj

e�tEj minð Þ ; ð1Þ

where Rnd(1) is a random number between 0 and 1,
and τ is a constant taking into account the temperature
(298 K) defined by the user.

(3) Again, k positions compatible with the geometry
requirements (bond length and bond angle) are ran-
domly generated for the fifth particle. Every position is
categorized as unfeasible or feasible depending on
atomic overlaps with atoms separated by more than
three bonds. The energy of each feasible position is
evaluated and one of them is selected by using the MC
acceptance criteria mentioned above. This procedure
ensures minimum torsional strain.

(4) Step (3) is repeated for the remaining atoms in the
protein. If for a given atom i all the generated positions
lead to atomic overlaps (i.e., the number of feasible
positions is zero), the molecule building is restarted
from the atom i-ip where ip increases with the number
of failures.

In this work k and ip were fixed at 20 and 10 for all
the studied proteins. The energies of the generated posi-
tions Ej have been calculated as the sum of the torsional
and van der Waals contributions associated with the
atoms separated by three chemical bonds (1–4 interac-
tions) while all other contributions were neglected. It
should be emphasized that, whilst this procedure is not
biased to favor microstructures with very low total
energies, it guarantees a minimum torsional strain for
the generated systems. Moreover, the omission of the
electrostatic interactions avoids the participation of
charged groups of atoms in the generation procedure
(i.e., the electrical neutrality is maintained in the com-
plete residues, once generated, while incomplete resi-
dues remain electrically charged during the generation
process). Next sections show that the role played by 1–
4 interactions in the description of the unfolded proteins
is crucial. In order to prove the impact of 1–4 interac-
tions in these systems, the generation algorithm was
modified. Specifically, in the “modified” generation al-
gorithm the energetically-based (Eq. 1) MC acceptance
criterion used in steps 2 and 3 was replaced by a simple
random acceptance criterion. The “modified” algorithm

was only used when explicitly indicated, the procedure
relying on the 1–4 interactions contribution being
switched on otherwise.

In any case the generated positions fulfill the inter-
nal geometry restrictions (i.e., molecular connectivity,
bond distances and bond angles). The protein is se-
quentially (i.e., amino acid by amino acid) built using
the primary structure provided in the input. Moreover,
once a backbone atom has been generated, the proce-
dure continues through the side chain rather than
through the next atom of the backbone. An important
difference between this method and those developed
for the synthetic polymers simulation in the amorphous
solid state is that in the latter the radii of the atoms
and pseudo-atoms were reduced multiplying by a factor
λ < 1 [24–26]. The scaled radii {λ·R} were used to
categorize each generated position into feasible or un-
feasible. However, in the current study this reduction is
unnecessary as no multichain system (i.e., solid state
system) was considered.

The generated microstructures were relaxed using a
simple Metropolis MC method to eliminate the least
favored inter-residue nonbonding interactions as well
as to enhance the most attractive ones (e.g., salt
bridges). Accordingly, the relaxation was carried out
using a complete force-field that includes not only the
1–4 interactions mentioned above but also the van der
Waals and electrostatic interactions between atoms sep-
arated by more than three chemical bonds. The expres-
sions to describe such energy contributions as well as
all the required parameters were taken from AMBER
force-field [28]. It should be noted that the sophisticated
relaxation methods previously developed for multichain
systems (e.g., those based on the geometric aspects of
configurational bias and rotation MC methods [31, 32]
are not necessary here because of the single-chain na-
ture of the systems under study. Furthermore, disordered
proteins are expected to be essentially dominated by
bonding and short-range non-bonding interactions,
which are implicitly considered in the generation step
(i.e., avoiding both torsional strain and steric clashes)
rather than by long-range non-bonding interactions. Ac-
cordingly, the relaxation of all microstructures generated
in this work consists of 1000 MC steps only.

Simulated proteins

As was mentioned above, many biological processes are
controlled through disorder-to-order transitions, the under-
standing of disordered states being essential for the devel-
opment of therapeutic targets. In this context, seven NUPs
whose specific functions are still unknown and which are
involved in human diseases or essential biochemical
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processes, were selected to check if the stochastic micro-
structures provided by our computational scheme are repre-
sentative enough to predict experimental structural
properties.

The seven studied NUPs are:

Tau
This is a microtubule-associated protein occurring

in the axons of neurons. It is one of the two main
proteins involved in the pathology of Alzheimer’s
disease via the formation of β-sheet aggregates called
paired helical filaments [33]. Overall, Tau has a very
low content of secondary structure and retains its
unfolded state even after binding to microtubules
[34].
Nucleocapsid binding domain of Sendai virus phospho-
protein (SeV P)

SeV is the prototype virus of the Paramyxoviridae
which infects the respiratory track of mice and causes
pneumonia. The RNA polymerase of the virus is con-
stituted by two proteins, the large (L) protein and the
phosphoprotein (P). SeV P plays a crucial role in the
enzyme by positioning L onto the matrix for transcrip-
tion and replication formed by the RNA and the nucle-
oprotein, the N-RNA [35]. The SeV P has a modular
structure with two distinct functional domains: a disor-
dered N-terminal domain, and a C-terminal domain
which carries the oligomerization region forming a
three-helix bundle [36].
Human protein Ki-157 (Ki157)

The expression of the human protein Ki157 in di-
verse cancer cells and its phosphorylation in blood
leukocytes only after mitogenic activation, have sug-
gested its possible role in cell signalling [37]. More-
over, its interaction with several other regulatory
proteins possibly plays a role in cellular signaling,
transcriptional regulation or RNA metabolism. It was
proposed that Ki157 has an extended shape and belongs
to the class of NUPs [38].
Prothymosin alpha (ProTα)

ProTα is a small nuclear protein, which was initially
isolated from rat thymus. Although the precise function
of ProTα is currently unknown, an accumulating line of
evidences suggests that it is associated with cell prolif-
eration. This protein is in a random coil conformation at
physiological conditions [39], and is therefore a NUP,
whereas at acidic pH it is transformed into a premolten
globule state [40].
Myelin basic protein (MBP)

MBP is present between the cytoplasmic leaflets of
the compact myelin membrane in both peripheral and
central nervous systems. Among the existing isoforms,
the first species is the most abundant in adult human

myelin and is essential for the formation of the latter
[41]. MBP is one of the major autoantigens in several
scleroses. It was shown to be an extended, intrinsically
disordered protein in solution [42].
Mammalian α4 (α4)

This protein, which is also known as immunoglobu-
lin binding protein 1 (IgBP1), is involved in a variety of
functions related to differentiation, cell proliferation,
apoptosis and vertebrate embryonic development [43].
The structural basis for its regulatory function is still
unclear. It contains large unstructured regions [44].
Enterocin EJ97 (EJ97)

Bacteriocins belong to the wide variety of antimicro-
bial ribosomal peptides synthesized by bacteria and are
used in food preservation and in human therapeutics.
Particularly, they are a good alternative to conventional
antibiotics ineffective against resistant bacterial strains.
EJ97 has a broad range of activity against Gram-
positive bacteria [45]. The peptide was shown to lack
any well-defined tertiary structure and to behave as a
disordered protein [46].

In addition to NUPs, the strategy presented in this work
has been applied to seven classical proteins, which were
experimentally studied in denaturation conditions [47–49].
Once our methodology transferability has been proven for
any non-native conformational states, it should be reliable to
understand protein unfolding-folding processes. To this pur-
pose, we have selected proteins as diverse as: apomyoglobin
(APO), an oxygen-binding protein in the muscle tissue;
CheY, a bacterial chemotaxis response regulator controlling
the direction of flagellar rotation; cytochrome c (Cyto-c), a
heme protein involved in the electron transport chain of
mitochondrion; OspA, an antigenic lipoprotein; protein G,
an immunoglobulin-binding protein expressed in group C
and G Streptococcal bacteria; Snase, a staphylococcal nu-
clease; and Ubiquitin (UBI), a regulatory protein ubiquitous-
ly expressed in eukaryotes.

Properties calculated to describe the disordered state

For the hydrodynamic-level properties, we decided to fol-
low the strategy nicely described by Garcia de la Torre et al.
[50] who proposed to compute the properties as conforma-
tional averages over values obtained for a number of micro-
structures, each being considered to be rigid. Following this
master-plan we produced representative microstructures for
each of the seven NUPs and “classical” proteins described
above, using the computational strategy presented in the
first part of this work.

As the root mean square distance between the constitu-
tive mass elements and the center of mass of the full atomic
set, the radius of gyration (Rg) is a structural parameter
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characterizing the size and shape of a particle, alongside
with the maximal head-to-tail distance, also denoted maxi-
mum length (Lmax). For a rigid system made of i mass
elements mi each separated from the center of mass by a
distance ri, it writes:

Rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i
mir2i

P

i
mi

v

u

u

u

t : ð2Þ

Consequently, it can be straightforwardly computed once
the atomic positions of any given configuration of the sys-
tem are known. In the field of proteins, it is often related to
the structure compactness, which makes it a key parameter
in the folding processes.

Often similar in magnitude, the hydrodynamic (or
Stokes) radius (RH) is directly related to the diffusion coef-
ficient (D) of the macromolecule diffusing in a medium of
viscosity η at temperature T, by the Stokes-Einstein relation:

D ¼ kT

6 p ηRH
: ð3Þ

Similarly, the Svedberg relation (Eq. 4) allows obtaining
the sedimentation coefficient (s):

s ¼ DM 1� uρð Þ
RT

; ð4Þ

where M is the molecular weight, υ is the specific volume, ρ
is the solution density, R is the gas constant and T is the
absolute temperature. These properties can be experimental-
ly measured for proteins by several techniques [51].

NMR was recently recognized as a potential method to
describe the protein folding mechanisms and the conforma-
tional state of NUPs [52, 53]. We therefore predicted chem-
ical shifts for two NUPs and one denatured protein with the
SHIFTS program [54] from their atomic coordinates. It was
developed based on an additive model of chemical shift
contributions, corresponding to various conformational
effects found in a database of density functional theory
(DFT) calculations on more than 2000 peptides. Some em-
pirical extensions were used for covering additional confor-
mation regions and residue types.

Results

Assessment of our computational scheme performance

The influence of the number of representative microstruc-
tures generated and subsequently relaxed was investigated
for MBP and UBI, which involve 171 and 76 residues,
respectively. Figure 2 represents the accumulated average

of Rg against the number of conformations. As it can be
seen, this average stabilizes in both cases at 39.3 Å and
25.7 Å for about 6.5·103 microstructures. Accordingly, a
total of 104 microstructures were produced for the set of
proteins, independently of their size. That is expected to
guarantee the convergence of the calculated properties.

Figure 3a shows the distribution of energies associated to
the first 104 microstructures obtained for MBP and UBI.
The shape of both distributions fits to a Gaussian function,
demonstrating the reliability of the method and showing that
the conformations can be described in terms of rotational
isomers [55]. As expected, the Boltzmann distributions dis-
played in Fig. 3a depend on the protein size. The relative
energy distribution is wider when the number of residues
increases, reflecting the enhancement of the conformational
flexibility. Similarly, Rg for the same set of conformations of
MBP and UBI also follows Gaussian distributions, as
depicted in Fig. 3b, the dependence between the width of
the functions and the size of the protein being very similar to
those found for the relative energies. On the other hand,
Fig. 4 represents the number of microstructures compatible
with several Rg and relative energy intervals. The remark-
able dispersion of microstructures observed for both MBP
and UBI reflects the flexibility of the two macromolecules.
Indeed, in both cases even low-energy conformations are
still compatible with a wide range of Rg values.

Table 1 lists the averaged conformational parameters
predicted for the 14 proteins examined in this work (seven

Fig. 2 Accumulated value of the averaged radius of gyration (Rg in Å)
against the number of microstructures produced for (a) MBP and (b)
UBI

4508 J Mol Model (2012) 18:4503–4516



NUPs and seven “classical” proteins) and the available
experimental values are also included for comparison. In
order to illustrate the extensive conformational sampling
achieved using this simulation strategy, Fig. 5 represents
microstructures with globular, elongated and intermediate
shapes produced for Sev P. Figure 6 represents the calculat-
ed versus the experimental Rg values. An excellent agree-
ment is observed between both values for all the proteins
with exception of MBP, α4 and EJ97. In the two former
cases the experimental Rg is underestimated and overesti-
mated, respectively, by 27 % and 38 %. This difference is
even larger for EJ97, which was attributed to the fact that the
experimental estimations of Rg and RH were roughly de-
rived from the diffusion coefficient D imposing a spherical
shape for the NUP [46]. A linear correlation analysis (Rg,exp

0 c·Rg,calc) between the experimental and calculated on the
full set of Rg values leads to a deviation of only 4 % (c0
0.96) with poor correlation (R200.71), while excluding two
such proteins (Fig. 6) evidences a very high correlation
(R200.95) preserving the 4 % deviation (c01.04).

Figure 7a represents the calculated Rg against the number
of residues (n) for the 14 investigated proteins. It is worth
noting that this structural property logarithmically increases
with n, the correlation coefficient derived from the fitting

being R200.97. In comparison, consideration of the exper-
imental Rg values against n for the whole set led to a
logarithmic fitting with a correlation coefficient of only
R200.80 (Fig. 7b) confirming that the Rg values experimen-
tally determined for MBP, α4 and EJ97 deviate from the
general behavior usually followed by both natively and
chemically unfolded proteins. Accordingly to our previous
prediction, the regression coefficient increases to R200.90
when these two proteins are eliminated from the fitting
(Fig. 7b).

On the other hand, the accuracy in prediction of Rg

appears to evolve with the size of the protein. This is
reflected by Fig. 8, which represents the square difference
between the experimental and calculated Rg against n for 11

Fig. 4 Three dimensional graphic representing the number of micro-
structures compatible with defined intervals of radius of gyration (in Å)
and relative energy (in kcal mol−1) for (a) MBP and (b) UBI

Fig. 3 Normalized distribution of (a) relative energies and (b) radius
of gyration (in Å) obtained for 104 microstructures of MBP (gray line
and diamonds) and UBI (black line and squares)

J Mol Model (2012) 18:4503–4516 4509



proteins (i.e., the MBP, α4 and EJ97 have not been consid-
ered in the analysis for above mentioned reasons). Except in
the case of Protα, the square difference is larger for the
proteins involving more than 250 residues even though the
agreement between the experimental and calculated values
is excellent for such systems. Moreover, no detailed corre-
lation was found between the square difference and n, as
reveals the fact that the error is 10 %, 8 % and 5 % for OspA
(273 residues), Ki157 (292 residues) and Tau (441 residues),
respectively.

The other experimental values (i.e., Lmax, RH, D and/or s),
are rather sparse in literature. However, very good agree-
ment was obtained between the calculated and the experi-
mental values with the obvious exception of MBP and α4,
again. Indeed, their Lmax is underestimated and overesti-
mated, respectively. Figure 9a represents the logarithm of
the calculated RH against the logarithm of n. As expected,

RH increases with n, the equation resulting from the fitting
being very similar to those typically found for random coil
macromolecules including globular proteins [51, 56]. Spe-
cifically, experimental measures of RH in different

Fig. 6 Graphical representation of calculated radii of gyration (in Å)
versus the experimental values for the 14 proteins considered in this
work. The linear regression analysis (y 0 c·x) was performed excluding
the α4 and MBP proteins

Fig. 7 Graphical representation of (a) calculated and (b) experimental
radii of gyration versus the number of residues for the 14 proteins
considered in this work. The equation derived from logarithmic regres-
sion analysis (y 0 c·lnx + b) is indicated. In (b) the regression obtained
considering the proteins is represented with a solid line and black
letters, while the fitting performed excluding the values of MBP, α4
and EJ97 proteins are provided in gray and with a dashed line

Fig. 8 Graphical representation of square difference between the
experimental and calculated radii of gyration versus the number of
residues. The results obtained for MBP, α4 and EJ97 are not included

Fig. 5 Representative microstructures obtained for SeV P, which
correspond to conformations with (a) globular, (b) elongated and (c)
intermediate shapes

4510 J Mol Model (2012) 18:4503–4516



conditions led to:

Ln RHð Þ ¼ bþ a � Ln nð Þ; ð5Þ
where b≈2.2 and a≈0.5, though both parameters depend on
the solvent (water, urea, guanidinium chloride, etc.), the
ionic strength, and the method to measure RH (i.e. size
exclusion chromatography, dynamic light scattering, pulse
field gradient NMR spectroscopy, etc.).

The variation of Rg against RH is displayed in Fig. 9b,
where the experimental and calculated values of both proper-
ties are considered. Although, RH experimental values are
only available for a few of the 14 investigated proteins, the
behavior followed by such parameter and the corresponding
Rg have been used as the reference: Rg(exp)01.08·RH(exp).
Both the variation of the experimental Rg against the calcu-
lated RH and of the calculated Rg against the calculated RH fit
very well to the latter equation [i.e., Rg(exp)01.16·RH(calc)
and Rg(calc)01.11·RH(calc)], reflecting again the reliability of

Fig. 9 Graphical representation of: (a) the logarithm of the calculated
RH (in Å) versus the logarithm of the number of residues for the
proteins considered in this work. The equation derived from a linear
regression analysis (y 0 a·x + b) is indicated. (b) the Rg versus the RH :
(i) the calculated Rg against the calculated RH (black squares, solid
black line and black plain text); (ii) the experimental Rg against the
calculated RH (gray squares, solid gray line and gray plain text); and
(iii) the experimental Rg against the experimental RH (empty triangles,
dashed black line and black italics text). MBP, α4 and EJ97 are not
included in the analyses; (c) the experimental Rg (in Å) versus the
calculated Rg for the studied proteins, which were produced without
considering the 1–4 interactions in the generation process. In order to
facilitate the comparison with Fig. 5, the linear regression analysis (y 0
c·x) was performed excluding the α4, MBP and EJ97 proteins

Fig. 10 Experimental (a) Cα, (b) Cβ chemical shifts (in ppm) of
Ubiquitin with respect to calculated values

J Mol Model (2012) 18:4503–4516 4511



the microstructures produced by the method. Though the
Zimm’s theory of polymer dynamics predicts that random
coils obey the ratio Rg≈1.5·RH, a recent study of protein L
using single-molecule fluorescence methods gave values in
the fully denatured state, and the ratio between them was ~1.1
[57].

Finally, chemical shifts of one protein from each
family, Ubiquitin and EJ97, were calculated and com-
pared to the available experimental data. First, the Cα
and Cβ chemical shifts of Ubiquitin were considered.
Figures 10a and b show really good agreement between
both values, with R200.98 and 0.99 for Cα and Cβ,

respectively. This concordance is maintained all along
the amino acid sequence as shown in Fig. 11. Relative
errors range from 0.2 to 4.6 and 0.05 to 9.4 % for Cα
and Cβ, respectively. The conclusions are the same for
the H’s chemical shifts (from Hα to Hd) of EJ97 as
pictured for Hα and Hd in Fig. 12a and b. The best
correlation between experimental and theoretical values
is observed for Hb’s (R200.94) and Hd’s (R200.99).
The relative errors are globally higher than for C chem-
ical shifts. For four residues, Ile5, Tyr30, Lys31, Pro38,
the relative error is higher than 15 % for two types of
H’s.

Fig. 11 Experimental (black)
and calculated (light gray) Cα
chemical shifts (in ppm) of
Ubiquitin with respect to amino
acid sequence

4512 J Mol Model (2012) 18:4503–4516



Discussion

The simulation strategy here presented, which is inspired by
those developed for the properties of amorphous polymers
(i.e., disordered multichain macromolecules systems)
[23–25], has been found to satisfactorily and efficiently
describe the conformational behavior of both NUPs and
classical proteins in denaturation conditions. Indeed, our
generation-relaxation method allows obtain a large number
of representative uncorrelated microstructures at the atom-
istic level using nominal computational resources. For ex-
ample, the 104 microstructures of Tau (441 residues) were
produced in ~55 h (2.3 days) using a AMD opteron Magny
Cours (8 cores 6134) 2.3 GHz double processor, while the
requirements needed by conventional methods like MD and
MC are significantly higher because of this intrinsically
associated structural correlation.

The implemented strategy consists first in the generation
of a limited set of characteristic microstructures, corroborat-
ed by the relatively low number of conformations required
to converge the structural properties. As the present algo-
rithm was designed to produce microstructures with mini-
mal torsional strain and without local and non-local steric
clashes, this led to hypothesize that the unfolded state is

mainly governed by bonding and short-range non-bonding
interactions. Therefore, the 1–4 interactions, which are only
to be evaluated during the process, turn out to be essential in
disordered proteins. The second stage is a relaxation process
based on the application of 103 MC steps only, that allows
eliminating and enhancing very attractive or repulsive
interactions.

This new methodology presents significant advantages
with respect to the existing procedures. More specifically,
energy evaluation criteria are introduced in the generation
algorithm, which allows to significantly reduce the number
of generated microstructures with respect to those based on
library sampling (i.e., based on the selection of {φ,ψ} from a
torsional subset database). For example, the flexible meccano
method needed a huge amount of microstructures (i.e.,
50,000) for NUPs α-synuclein and Tau [58], while energy
criteria based on 1–4 interactions allows considerable reduc-
tion in such number, as shown in this work. From a compu-
tational point of view, our method is much more efficient than
others also based on energy calculations, as for example MD
simulations, as the latter requires a huge amount of CPU
resources for the production of uncorrelated microstructures.

Another issue refers to the evaluation of properties using
conformational averages rather than conventional Boltzmann

Fig. 12 Experimental (black) and calculated (light gray) (a) Hα, (b) Hd chemical shifts (in ppm) of EJ97 with respect to amino acid sequence
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distributions. It is worth noting that the proposed methodolo-
gy is dedicated to the generation of microstructures without
any type of torsional strain, which was thought to be a crucial
factor for the description of the unfolded state in proteins.
Accordingly, the energies associated to the generated struc-
tures follow a Boltzmann distribution by themselves, and the
derived properties are consequently directly averaged. The
biasing has been introduced through the acceptance MC cri-
terion used to choose among the different generated positions,
which is based on the energy evaluated for the 1–4 interac-
tions. Moreover, the latter interactions have been found deci-
sive for the satisfactory description of unfolded “classical”
proteins and NUPs. It should be underlined that the effect of
1–4 interactions is intrinsically considered by methods based
on statistical criteria, which extract the backbone dihedral
angles {φ,ψ} from populations of coil regions found in
protein structural databases.

In order to demonstrate the remarkable role of the 1–4
interactions, 104 microstructures were produced for the 14
studied unfolded proteins but without considering this class
of interactions during the generation process (i.e., using the
“modified” generation algorithm described above). Figure 9c,
which represents the calculated against the experimental Rg

values, evidences that the conformations produced in absence
of 1–4 interactions are more compact than those obtained
when these interactions are considered in the generation pro-
cess (Fig. 6). Consequently, the calculated values are under-
estimated by around 22 % with respect to the experimental
ones (R200.753 and 0.905 when the MBP, α4 and EJ97
proteins are included and excluded, respectively, in the anal-
ysis). These results confirm the importance of 1–4 interactions
in the conformational description of unfolded proteins.

Another important issue refers to the relationship between
the Rg and the number of residues n. Results displayed in
Fig. 7a and b, which illustrate such dependence for both the
calculated and the experimentally determined Rg values, sug-
gests that the influence of the chemical nature on the structure
of denatured proteins is relatively small. In order to confirm
this feature, the Rg have been calculated considering polypep-
tides formed by 50, 100, 150, 200 and 250 identical Ala
residues. Results, which are displayed in Fig. 13, reflect very
similar dependence behavior. Moreover, the Rg calculated for
polypeptides of 100 residues obtained by repeating the fol-
lowing sequences –(Ala)–, –(Val)– and –(Ala-Val-Ser)– is
34.5, 29.6 and 32.0 Å. These values are very similar to those
calculated and experimentally determined for Cyto-c and SeV
P (Table 1), which involve 104 and 95 residues, respectively,
and present a significant variability in their primary structure.
Accordingly, the role played by the molecular length of the
unfolded proteins seems to bemore important than that played
by the chemical nature.

Fig. 13 Graphical representation of the radii of gyration calculated for
polyalanine versus the number of residues. The equation derived from
logarithmic regression analysis (y 0 c·lnx + b) is indicated

Table 1 Averaged conformational parameters predicted for the
proteins studied in this work: Radius of gyration (Rg; in Å),
maximum length (Lmax; in Å), hydrodynamic radius (RH; in Å),

diffusion coefficient (D; in cm2·s−1), and sedimentation coefficient
(s; in s). Experimental values (if available) are provided in
parenthesis

# Rg Lmax RH D (10−7) s

Tau 61.5 (65) 200.0 52.5 4.2 2.1

SeV P 29.7 (28.1) 91.1 (85) 27.1 8.1 0.9

Ki157 51.0 (47) 164.9 (150) 44.4 (41) 5.0 (4.7) 1.8 (2.2)

ProTα 32.5 (37.8) 103.4 29.8 7.4 0.9

MBP 39.3 (54) 125.1 (160) 35.0 6.3 1.2

α4 56.8 (41.2) 183.2 (142) 48.6 4.5 1.9

EJ97 18.4 (9.4) 59.6 20.0 (12.2) 11.0 (14.1) 0.6

APO 38.0 (40) 101.6 34.3 6.4 1.2

CheY 35.0 (38) 91.8 31.9 6.9 1.0

Cyto-c 30.4 (31) 82.1 28.8 (30.6) 7.6 1.0

OspA 50.4 (56.1) 130.7 43.8 5.0 1.5

Protein G 22.8 (23) 71.9 22.6 9.7 0.6

Snase 34.1 (32) 109.8 31.6 6.9 1.1

UBI 25.2 (26) 81.5 24.9 (25.8) 8.8 0.8

4514 J Mol Model (2012) 18:4503–4516



Conclusions

To summarize, our computational approach led to an excel-
lent fit between experimental and calculated Rg values indi-
cating that the sets of conformations are statistically able to
capture the essential characteristics of real unfolded pro-
teins, though (i) each of such sets involves a relatively low
number of conformations with respect to other theoretical
methods; and (ii) no adjustable parameter was introduced in
our theoretical strategy. The latter is particularly remarkable
since no restriction was imposed in the generation process
for φ and ψ flexible dihedral angles, avoiding any biasing
in the results. However, the allowed values for these angles
could be restricted to the sterically accessible conformations
of the different amino acids. This strategy will further re-
duce both the required computational resources and the
number of conformations needed to describe the unfolded
proteins.

Comparisons between theoretical and experimental val-
ues of the several properties considered in this work suggest
that MBP and α4 do not behave as could be expected from
NUPs. Indeed, the Rg and Lmax values experimentally de-
termined for MBP are overestimated with respect to those
predicted for a disordered protein, while the properties mea-
sured for α4 are underestimated. Considering that the ex-
perimental and theoretical values found for the other
investigated proteins are in excellent agreement, the proper-
ties of both MBP and α4 should be re-investigated, or
alternatively they should not be considered as completely
unstructured systems.
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